基于峰值控制的IGBT串聯(lián)均壓技術(shù)
來源: OFweek
導(dǎo)讀: 絕緣柵雙極型晶體管(IGBT)串聯(lián)應(yīng)用的關(guān)鍵技術(shù)是均壓控制。峰值控制技術(shù)是保證串聯(lián)運(yùn)行中每個(gè)IGBT的集射極電壓都不超過**極限的有效技術(shù)。在介紹IGBT工作特性的基礎(chǔ)_卜.對串聯(lián)IGBT關(guān)斷過程不同動(dòng)態(tài)時(shí)段內(nèi)的均壓控制目標(biāo)進(jìn)行了分析,為設(shè)計(jì)不帶RC緩沖回路的均壓方法提供了理論基礎(chǔ)。
1、引言
隨著電力電子技術(shù)的發(fā)展,高壓大功率設(shè)備對IGBT的耐壓等級提出更高要求,故IGBT串聯(lián)技術(shù)成為研究熱點(diǎn)之一。IGBT串聯(lián)應(yīng)用的關(guān)鍵問題是實(shí)現(xiàn)均壓。在眾多IGBT串聯(lián)均壓技術(shù)中,*簡單、可靠的方法是并聯(lián)RC緩沖回路。但在高壓場合,考慮到損耗、體積及造價(jià)等因素,無RC緩沖回路的均壓方法更實(shí)用。此外,基于電壓軌跡控制和門極信號延時(shí)調(diào)整等有源方法,因控制電路過于復(fù)雜,使用場合受到限制。故有必要基于IGBT特性及均壓控制的要點(diǎn),選擇更有效的均壓方法。
在此首先分析IGBT各階段均壓控制的目標(biāo),采用穩(wěn)壓管箝位的峰值控制技術(shù),在低壓實(shí)驗(yàn)中驗(yàn)證了該均壓原理的有效性。然后針對該技術(shù)在高壓場合應(yīng)用時(shí)的缺點(diǎn),提出一種新的峰值控制方法,并通過仿真驗(yàn)證了該方法的有效性。
2、IGBT串聯(lián)均壓控制分析
作為IGBT的主要特性,輸出特性描述的是以門極電壓uGE為參考變量時(shí),集電極電流iC與集射極間電壓uCE的關(guān)系。輸出特性分為4個(gè)區(qū)域:飽和區(qū)、有源區(qū)、截止區(qū)和擊穿區(qū)。IGBT的動(dòng)態(tài)開關(guān)過程,主要是在截止區(qū)和飽和區(qū)間來回轉(zhuǎn)換,而在器件的轉(zhuǎn)換過程中經(jīng)過有源區(qū)。
IGBT器件通常有4種工作狀態(tài):關(guān)斷瞬態(tài)、關(guān)斷穩(wěn)態(tài)、開通瞬態(tài)、開通穩(wěn)態(tài)。因IGBT不均壓情況在關(guān)斷時(shí)比開通時(shí)更復(fù)雜,在此以關(guān)斷時(shí)的均壓控制為主要研究目標(biāo)。
按外電路和器件內(nèi)部參數(shù)不一致等因素對uCE不均壓的影響效果,可將串聯(lián)IGBT關(guān)斷不均壓過程分為關(guān)斷瞬間的T1(uCE上升部分)、T2(拖尾部分)和關(guān)斷穩(wěn)態(tài)(T2以后)三階段,如圖1所示。T1階段,主要是由外電路和器件內(nèi)部參數(shù)的差異引起串聯(lián)IGBT的uCE不均壓。此時(shí)IGBT工作在有源區(qū),可通過調(diào)節(jié)uGE對uCE進(jìn)行控制;T2階段,引起串聯(lián)IGBT的uCE不均壓的主要因素是拖尾電流不同。此時(shí),IGBT進(jìn)入截止區(qū),uGE對拖尾電流無影響,由拖尾電流引起的uCE不均壓不受門極直接控制。關(guān)斷穩(wěn)態(tài)時(shí),只有很小的漏電流流過IGBT,并聯(lián)合適的均壓電阻即可實(shí)現(xiàn)IGBT串聯(lián)運(yùn)行。
3、基于峰值控制的均壓方法
IGBT均壓*直接的目的就是保證串聯(lián)運(yùn)行中每個(gè)IGBT的uCE都不超過**極限。所以,對電壓峰值進(jìn)行控制是很重要、有效的技術(shù)路線。峰值控制不關(guān)心uCE的中間變化軌跡,只有當(dāng)uCE升至設(shè)定的電壓水平時(shí),均壓控制才開始起作用。當(dāng)所有串聯(lián)IGBT的uCE峰值都被箝位在給定值之內(nèi),就實(shí)現(xiàn)了動(dòng)態(tài)均壓的目的。
3.1、穩(wěn)壓管箝位的峰值控制
通過上述對串聯(lián)IGBT均壓階段特性的分析,綜合各階段均壓控制的特點(diǎn),采用基于穩(wěn)壓管箝位的峰值控制方法實(shí)現(xiàn)IGBT串聯(lián)均壓,均壓電路如圖2a所示。該方法將串聯(lián)IGBT的關(guān)斷過程進(jìn)行優(yōu)化,在T1階段,使uCE具有兩階段電壓變化率,如圖2b所示。第1階段電壓變化率較快,以降低損耗:第2階段電壓變化率下降,以降低電壓不均衡度,并為箝位電路贏得更多的響應(yīng)時(shí)間。通過調(diào)節(jié)轉(zhuǎn)折點(diǎn)和峰值箝位點(diǎn)的值,在IGBT關(guān)斷過程的損耗與電壓均衡度之間做出折中。在T2階段,由拖尾電流的差異引起不均壓,通過峰值箝位電路,向門極注入電流,改變uGE,使IGBT進(jìn)入有源區(qū),進(jìn)而控制uCE電壓,達(dá)到均壓控制。在關(guān)斷穩(wěn)態(tài)時(shí),均壓支路還起到均壓電阻的作用。
當(dāng)串聯(lián)單個(gè)IGBT承受電壓較高時(shí),電路中穩(wěn)壓二極管需串聯(lián)。由于穩(wěn)壓二極管增多導(dǎo)致可靠性降低,其在高壓大功率場合的使用受到限制。
3.2、IGBT雪崩箝位的峰值控制
通常認(rèn)為,一旦超過IGBT額定電壓就會(huì)引起過電壓擊穿,導(dǎo)致不可逆的失效。其實(shí)IGBT發(fā)生過電壓擊穿時(shí),雪崩電壓擊穿本身不會(huì)損壞器件,是個(gè)可恢復(fù)過程;過電壓擊穿失效本質(zhì)在于雪崩電壓擊穿時(shí)產(chǎn)生的焦耳熱累積引起結(jié)溫不斷上升的熱擊穿失效。在此通過實(shí)驗(yàn)驗(yàn)證IGBT具有可承受短時(shí)過電壓擊穿能力。實(shí)驗(yàn)原理電路如圖6a所示,V1作為開關(guān)管與電感負(fù)載L串聯(lián),實(shí)驗(yàn)對象Vs與一個(gè)限流電阻R0串聯(lián),并在V1兩端。由于L的作用,當(dāng)V1關(guān)斷時(shí),V1的uCE波形中會(huì)出現(xiàn)高于直流側(cè)電壓的浪涌電壓。當(dāng)V1的UCE超過Vs的雪崩電壓時(shí),Vs發(fā)生雪崩擊穿箝位現(xiàn)象,其余電壓降到R0上。實(shí)驗(yàn)波形如圖6b所示,型號為K50T60的Vs,其額定電壓為600V,發(fā)生雪崩擊穿時(shí),電壓基本穩(wěn)定在630V,流過約為5.9A的電流。